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IntroductionAt the breakup of Gondwanaland (~130―110 Ma), Africa, India, and Madagascar moved away from South America and Antarctica, with Australia still firmly conjoined to the latter (Figure 1).  This movement left South America connected to Antarctica―Australia  by a long isthmus (Ithmus of Scotia) of the southern Andes, at least from the Late Cretaceous (Campanian) through the Eocene (Yanbin  1998,  Lawver  et al. 1999, Sanmartín 2002).  This  Antarctic land bridge remained in place from the late Cretaceous through the Paleocene (65.5 ± 0.3 Ma to 55.8 ± 0.2 Ma) and Eocene (55.8 ± 0.2 to 33.9 ± 0.1 Ma) epochs.  At times it may have included short island arcs at either the Australian (Tasmanian) or South American ends.  This land bridge,  associated with a tropical to temperate Antarctic  climate  (Francis  et al. 2008),  was thus available to support the dispersal of plant and animal species for about 75 to 95 million years after the separation of  Africa,  a very long time.   One very interesting aspect  about this  interval  is  that  it  also brackets the mass extinction event at  the end of  the Cretaceous.   According to Penney  et al. (2003), however, that event did nothing to reduce the diversity of spiders as a group.

Figure 1.  Cretaceous (top) and Eocene (bottom)  reconstructions  of  Earth topography and bathymetry.   Although these  reconstructions  provide  a  good view  of  the  separation  of  Africa, Madagascar, and India from the rest of Gondwanaland,  they do not depict  the land  connections  beween  Antarctica and either South America, or Australia, respectively,  that  are  thought  to  have persisted well into the Eocene (Yanbin 1998,  Lawver  et  al.  1999,  Sanmartín 2002,  Francis et  al.  2008,  and others). ©  by  Ron  Blakely,  NAU  Geology. Noncommercial  use  with  attribution permitted.



Peckhamia 76.1  Salticidae of the Antarctic land bridge 2Near the  end of  the  Eocene,  at  the  Eocene―Oligocene boundary,  the  Australian plate,  including New Guinea,  separated from Antarctica and began its long journey toward the north.   This opened up the 
Tasmanian Seaway, allowing the cold Antarctic Circumpolar Current to isolate Antarctica, leading to the formation of a permanent ice sheet over that continent by ~33.5 Ma (Exon et al. 2000, 2004, Pollard and DeConto 2005).  Whether this opening, and the subsequent opening of the Drake Passage between South America and Antarctica (Bohoyo  et al. 2007, Maldonado  et al. 2007, Miller 2007, Smalley  et al. 2007, Eagles et al. 2009), can fully account for the rapid cooling of Antarctica at the end of the Eocene is still an open question, and the decline in atmospheric CO2 at that time may have been more important (DeConto and Pollard 2003, Huber et al. 2004, Barker and Thomas 2004, Livermore et al. 2004, Barker et al. 2006). Ocean  floor  presently  separating  South  America  and  Tasmania,  respectively,  from  Antarctica  was deposited after this time, beginning at the Eocene―Oligocene boundary (Torsvik et al., 2008).  In any case, rapid cooling did follow the end of the Antarctic land bridge between Australia and South America, and contributed to the subsequent isolation of the two great continental faunas.  The Eocene was followed by more extensive cooling and the growth of ice sheets in the Oligocene (Miller et al. 2008).  For reference, Lawver et al. (1999) provide a useful animated reconstruction of the breakup of Gondwanaland, and both Brown et al. (2006) and Torsvik et al. (2008) have published plate tectonic reconstructions (maps) of the entire Cenozoic transition around Antarctica.  The age of the oceanic lithosphere (Figure 2) provides a concise graphic overview of the timing of separation of the continents since the break-up of Pangaea (~175 Ma).

Figure 2.  Age of the ocean lithosphere (Ma).  Image created by Elliot Lim, Cooperative Institute for Research in Environmental  Sciences, NOAA National Geophysical Data Center (NGDC) Marine Geology and Geophysics Division.  Data and images available from http://www.ngdc.noaa.gov/mgg/.  Data Source Müller et al. (2008).A south-polar view of this chart (Figure 3) also depicts the relatively recent (since the Eocene ~33 Ma) separation of Antarctica from Australia (upper right, Tasmania) and South America (lower left, Andes to Transantarctic Range).   Also note the extensive sea-floor spreading (green areas) to the left,  between Antarctica  and Africa  (upper  left),  and between South America  and Africa,  associated with the  early break-up of Gondwana (~130—110 Ma).
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Although much of present-day Antarctica. particularly in the West (Western Hemisphere), is below sea-level  (Figure  4),  models  of  the  Eocene―Oligocene  transition  that  have  been  corrected  for  thermal 
contraction resulting from tectonic extension and for erosion and sedimentation since 34 Ma indicate that most of Western Antarctica was actually above sea level at that time (Wilson and Luyendyk 2009).  Even after more extensive glaciation in the Miocene (Jamieson and Sugden 2008), a tundra habitat persisted in Antarctica as recently as 14.1―13.8 Ma (Lewis et al. 2008).
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Figure  3.   Age  of  the  ocean  lithosphere,  from a  south polar view with Antarctica at the center.  Australia is to the  upper  right,  South  America  to  the  lower  left,  and Africa to the upper left.  Sea-floor spreading in green is primarily  associated  with  the  break-up  of  Gondwana. Note  the  presence  of  an  earlier  rift  to  the  south  of Australia,  before  later  sea-floor  spreading  separated Tasmania from Antarctica.  Sea-floor spreading between the  southern  Andes  of  South  America  and  the Transantarctic  Range  also  took  place  primarily  in  the post-Eocene timeframe.  Images by R. D.  Müller and P. W. Sloss,  NOAA-NESDIS-NGDC.   Data and images available from  http://www.ngdc.noaa.gov  /  mgg/  .   Data  Source Müller et al. (2008).

Figure  4.   Subglacial  topography  and  bathymetry  of Antarctica.   Although  much  of  Western  (Western 
Hemphere, to the left) Antarctica is now below sea level, corrected models now indicate that most of this area was above  sea  level  in  the  Eocene  (Wilson  and  Luyendyk 2009).  At upper left,  the long Transantarctic Mountain Range approaches the southern Andes of South America. © by Paul V. Heinrich.  Use subject to Creative Commons Attribution 3.0 Unported License.
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Peckhamia 76.1  Salticidae of the Antarctic land bridge 4The Antarctic climate during this transition is of great interest.  Studies of plant fossils indicate that a tropical  to  subtropical  climate  dominated during  the  late  Cretaceous (85 Ma),  with a  mean summer temperature of about 20oC (Francis  et al. 2008).  After some cooling, a generally warm, ice-free period continued through the Paleocene, with some warming in the early Eocene.  By the late Eocene, the climate was much cooler,  and temperate forests  were dominated by Southern Beech (Nothofagus,  with living species  in  Australia,  Tasmania,  New Guinea,  New Caledonia,  New Zealand,  Chile  and Argentina),  and monkey puzzle trees similar to living  Araucaria araucama (Cantrill and Poole 2005, Poole and Cantrill 2006,  Francis  et  al. 2008,  Jamieson  and  Sugden  2008).   Araucaria species  are  now  found  in  New Caledonia, Norfolk Island, Australia, New Guinea, Argentina, Chile, and southern Brazil.  Fossil marsupials, related to those presently found in South America, have recently been reported from Antarctic rocks of Eocene age (Woodburne and Zinsmeister 1982, Goin et al. 1999, 2007, Beck et al. 2008).  There is even good reason to believe that at least four endemic species of Antarctic springtails (Collembola)  represent a continuous Gondwanan line of descent that diversified in Antarctica during the mid- to late Miocene, 21―11 Ma (Stevens et al. 2006).  Based on the requirements of modern salticids, we can safely say that the Antarctic land bridge could have easily supported a diverse array of salticids during its long existence, particularly up to the late Eocene.For ease of reference, I will  refer to the joined continents of Australia, Antarctica, and South America collectively as  Australamerica (late Gondwana).  To find  Australamerican clades that used the Antarctic land bridge, we can look for groups that meet the following conditions:  1, The clade had to originate in Australamerica, during the long time period of its existence (~130―34 Ma).  2, Sister groups within the clade can now be found in both Australia and South America (at least in fossil form).  3, The presence of members of the clade in other areas, if applicable, can be explained by secondary migration from either Australia or South America.The  relationship  of  the  Australian  to  the  South  American  fauna,  particularly  with  respect  to  the distribution  of  marsupial  mammals,  has  been  long  recognized.   Most  early  explanations  for  this relationship, before the current acceptance of  continental drift and  plate tectonics, were awkward, and have little or no support today.  As early as 1924, however, Launcelot Harris presented a very bold and determined argument in support of the migration of marsupials directly over an Antarctic land bridge. Several  other  groups  of  animals  that,  based  on  criteria  1―3,  above,  may  be  characterized  as  native Australamericans, are identified in Table 1.Table 1.  Some clades of apparent Australamerican origin that appear to have migrated across the Antarctic land bridge before their more recent diversification within continental boundaries.  
Clade Australian sister group South American sister 

group
Gondwanan outgroup 
(more ancient clade)

ReferencesMammalia: Marsupalia (part) all Australian marsupials all South American marsupials Mammalia: Marsupalia Woodburne and Zinsmeister 1982, Goin et al. 1999, Luo et al. 2003, Nilsson et al. 2004, Goin et 
al. 2007, Beck et al. 2008Aves: Struthioniformes (part) Emu (Dromaius), Cassowary (Casuarius), Kiwi (Apteryx) Tinamiformes: 

Crypturellus, Eudromia, 
Nothoprocta, Tinamus

Struthioniformes, including African Ostrich (Struthio) van Tuinen et al. 1998, Cooper et  
al. 2001, Gibb et al. 2007, Hackett 
et al. 2008, Harshman et al. 2008Testudines: Chelidae all Australian chelids all South American chelids Pleurodira, including Podocnemidae and Pelomedusidae Gaffney 1977, Fujita et al. 2004, Krenz et al. 2005Anura: Hylidae (part) all Pelodryadinae all Phyllomedusinae Hylidae, including Hylinae (Hyla) Faivovich et al. 2005, Frost et al. 2006, Zeisset and Beebee 2008Of these groups, the timing of the diversification of the Marsupalia (late Cretaceous to early Cenozoic) has received the most attention, and is fully in line with the hypothesis of Australamerican origin for the 
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living species (Nilsson et al. 2004).  This does not require that the first marsupial was Australamerican, however (Luo  et al. 2003).  Recent work (Hackett  et al. 2008, Harshman  et al. 2008) places the  flying neotropical Tinamous (Tinamiformes) as a sister group to living flightless birds of Australia, New Guinea, and New Zealand. South American Rheas (Rhea and Pterocnemia) are more closely related to this group than the Ostrich (Struthio), and at least one view (Harshman et al. 2008, Fig. 2) supports the possibility of a closer relationship between the Rheas and the Tinamiformes.   The Kiwi  (Apteryx)  appears to have arrived in New Zealand later than the extinct Moas, and is not closely related (Cooper et al. 2001).  Chelid fossils have never been found outside of Australamerica.I  know of no salticid spiders,  living or fossil,  that have ever been found in Antarctica.   Yet it  is  quite possible that a diverse population of salticids, ancestral to at least some of those that we can find today in Australia and the Americas, did live in Australamerica, and were of Australamerican origin.  Assuming that Australasian ancestors (or clades based on these ancestors and their descendents) did exist,  our challenge lies in finding the corresponding clades among the known Salticidae.
Prehistory of the SalticidaeAs noted by Hill and Richman (2009), the fossil record for the Salticidae is indeed sparse, and is limited to the Cenozoic.  Some of the fossils that have been found are reviewed in Table 2.Table  2.   Some  fossil  salticid  genera.   Under  each  description,  similar  recent  salticids  are  identified  in  some  cases  in parentheses.

Era/Epoch Locality and Source Description ReferencesEocene ~54―42 Ma Baltic Sea:  Baltic Amber Gorgopsina (~hisponine), Prolinus (~hisponine), 
Eolinus (~Cyrba, Portia), Paralinus (~spartaeine?), 
Almolinus, Cenattus, Distanilinus

Prószyński and Żabka 1980, Keiser and Weitschat 2006, Maddison and Zhang 2006, Dunlop et al. 2009, Wolfe et al. 2009Oligocene to Miocene ~30―20 Ma Chiapas, Mexico: Chiapas Amber Lyssomanes García-Villafuerte and Penney 2003
Miocene ~20―15 Ma Dominican Republic: Dominican Amber Lyssomanes, Nebridia, Thiodina, Corythalia,  

Descangeles, Descanso, Pensacolatus
Cutler 1984, Iturralde-Vinet and MacPhee 1996, Dunlop et al. 2009Given our necessary reliance on fossil amber, we need to recognize that the absence of a group from that record does not establish the fact that this group did not exist.  It may simply mean that members of this group did not live on the trunks of trees that produced that amber, or that, for behavioral reasons, that group was not likely to be captured in amber.  For example, Penney (2007) has reported an unusual lack of  any salticid fossils from a deposit of lower Eocene amber in the Paris Basin (France).  Although this finding is consistent with the hypothesis that salticids did not occur in Europe until later in the Eocene, it does  little  to  establish  that  hypothesis  as  credible.   In  addition,  we  have  not  found  any definitive intermediate fossils, or proto-salticids, to clarify the evolution of the family.Żabka (1995) referred to the major influence of continental isolation in the distribution of major salticid groups that appeared to become highly diversified in the late Cretaceous to Eocene period.  However, we have no Cretaceous  or  Paleocene fossils  from this  group to  support  any hypotheses  related to  their radiation.  From the few available records (Table 2), we may assume that a diverse group that included hisponines and possibly spartaeines (or their close relatives), not greatly different from existing species in Africa or Asia, could be found in a much warmer northern Europe during the Eocene.  For much of this time the climate there was paratropical (Andreasson and Schmitz 2000, Harrington 2001, Kvaček 2002, Huber and Caballero 2003).  About 20 My later, by the early Miocene, we find an essentially modern fauna on a Caribbean island.  We have no transitional records to explain the emergence of diversity in either 



Peckhamia 76.1  Salticidae of the Antarctic land bridge 6area.  With few fossil records, however, hypotheses relative to the Salticidae of Australamerica will have to rely primarily on the current distribution of salticids, and their known (or  supported) phylogeny.   For example,  with  the  current  center  of  hisponine  diversity  in  Africa  (Maddison  and  Needham  2006, Maddison  and  Zhang  2006),  the  presence  of  Eocene  hisponine  fossils  in  Europe,  and  the  lack  of hisponines in Australia and the Americas, it is possible that this group evolved in the Laurasia-African supercontinent in a post-Gondwana time frame.   Given the diversity of spartaeines in Southeast  Asia (Wijesinghe  1990),  it  is  likewise  tempting  to  think  that  this  group  also  evolved  in  Laurasia-Africa. However, as we will discuss below, there is also some evidence for a post-Australamerican origin for this group,  from Australasian ancestors.   It  is  important to note that  all  living salticids,  whether  basal or 
salticoid (Maddison and Hedin 2006),  still  represent modern groups.   Within the Salticidae,  although some groups have been termed  primitive,  evolution proceeds in many directions,  and there has been more than one line of descent leading to either an increase in the acuity of the anterior medial eyes, or to reduction of the posterior medial eyes (Blest 1983, Blest and Sigmund 1984, 1985, Blest et al. 1990, Hill and Richman 2009).It has been notoriously difficult to pinpoint the time of emergence of  any major group from the fossil record.  Even well-known groups can turn out to be much more ancient than previously assumed (Table 3).Table 3.  Some new fossil discoveries that have pushed back the timeframe for emergence of respective animal groups.

Group
Previous discoveries New discovery

Reference
Age Formation Age FormationMammalia: Metatheria or near-marsupials  ~75 Ma (skeletal) ~125 Ma Lower Cretaceous Yixian Formation, China. Luo et al. 2003

Sauria:  feathered theropod ~150―145 Ma Jurassic Solnhofen Limestone in Bavaria (Archaeopteryx) ~160 Ma Earliest Late Jurassic Tiaojishan Formation of western Liaoning, China Hu et al. 2009
Testudines:  Chelidae ~23―5 Ma Miocene (?) and later fossils from Australia and South America ~105 Ma Lower Cretaceous (Lower Albian), Patagonia Lapparent de Broin and de la Fuente 2001; see also de la Fuente 2003Squamata: Gekkonidae ~54―42 Ma Eocene Baltic amber 110―97 Ma Lower Cretaceous (Albian) amber from Myanmar Bauer et al. 2005, Arnold and Poinar 2008Araneae:  Araneidae ~45 Ma Middle Eocene oil shales of the Messel pit, Hesse, Germany 121―115 Ma Lower Cretaceous (Aptian) amber from Alava, Spain Penney 2003, Penney and Ortuño 2006; see also Peñalver et al. 2006, 2007Araneae:  Dipluridae ~54―42 Ma Eocene Baltic amber 125―112 Ma Lower Cretaceous (Aptian) Crato Lagerstätte of Cearà Province, north-east Brazil Seldon et al. 2006
Araneae: Linyphiidae ~54―42 Ma Eocene Baltic amber 135―125 Ma Lower Cretaceous (Upper Neocomian–basal Lower Aptian) amber, Kdeirji/ Hammana outcrop, Lebanon

Penney and Selden 2002
Araneae: Mecysmaucheniidae Recent Living species found in southern South America and New Zealand

~100 Ma Lower Cretaceous (Late Albian) amber of Charente-Maritime, France Saupe and Seldon 2009
Araneae:  Pisauridae ~54―42 Ma Eocene Baltic amber 107―100 Ma Lower Cretaceous (Albian) amber from Myanmar Penney 2004



Peckhamia 76.1  Salticidae of the Antarctic land bridge 7As noted by Seldon et al. (2009),  almost every new specimen of spider from the Palaeozoic and Mesozoic  
eras  .  .  .  can  drastically  alter  our  perception  of  spider  phylogeny.   Proposed  molecular  clocks for evolutionary sequences are often based on synchronization with the fossil record, and these have to be reset when discoveries of earlier forms upset the underlying assumptions.  The lack of fossil markers for salticids, in particular, makes this task even more challenging.  When we examine the fossil record for emergence  of  a  clade,  we  need  to  be  cautious,  given  the  fact  that  one  or  several  uncommon,  early representatives of that clade may have been evolving in relative isolation, or in a different area for a long time.  Thus available fossils only set an upper bound for emergence, and with new fossil discoveries we can only expect that this bound will move lower, to an earlier time.
Some hypotheses related to the origin of the Salticidae, and the large salticoid clade, are outlined in Table 4.

Table 4.   Some major,  alternative hypotheses  and associated predictions related to  the origin of  major  salticid  clades.   All  are 
consistent with the fossil record.  Hypotheses 1—5 relate to origin of the Salticidae, 6—10 to the origin of the Salticoida).

Hypothesis Predicted fossils Predicted faunal distribution

1

Salticidae originated before the break-up of 
Pangaea into Gondwana and Laurasia ~150—175 Ma

Basal Pangaean 
lineages in 
Gondwanan and 
Laurasian fossils.

Major salticid lineages, except for relict groups, divided 
across Gondwana and Laurasia, and subsequently divided 
between Africa and Australamerica.  Later lineages divided 
between Australia and South America.

2

Salticidae originated in Laurasia after the 
break-up of Pangaea ~150—175 Ma and 
before the initial break-up of Gondwana 
~130—110 Ma

Laurasian fossils 
predate Gondwanan 
fossils.

Basal lineages found in many non-glaciated Laurasian areas 
as relict groups.

3

Salticidae originated in Gondwana after the 
break-up of Pangaea ~150—175 Ma and 
before the initial break-up of Gondwana 
~130—110 Ma

Gondwanan fossils 
predate Laurasian 
fossils.

Basal lineages found in many non-glaciated Gonwanan 
areas as relict groups.

4

Salticidae originated in Laurasia after the 
initial break-up of Gondwana  ~130—110 
Ma, but before the break-up of Australasia 
~35 Ma

Laurasian fossils 
predate Gondwanan 
fossils.

Basal lineages found in many non-glaciated Laurasian areas 
as relict groups.  Relict groups should also appear in Africa. 
No endemic relict groups in Australamerica.

5

Salticidae originated in Australasia after the 
initial break-up of Gondwana  ~130—110 
Ma, but before the break-up of Australasia 
~35 Ma

Australasian fossils 
predate any other 
fossils.  

Basal, relict groups primarily found in Australasia, in both 
South America and Greater Australia.  Most lineages in 
Laurasia appear in post-Australasian timeframe, after 
Australia and New Guinea approach Southeast Asia, or 
through Central America-Caribbean archipelago migration.

6

Salticoida originated before the break-up of 
Pangaea ~150—175 Ma

Diverse, Pangaean 
salticoid lineages in 
both Gondwanan and 
Laurasian fossils.

Major salticoid lineages, except for relict groups, divided 
across Gondwana and Laurasia, and subsequently divided 
between Africa and Australamerica.  Later lineages divided 
between Australia and South America.

7

Salticoida originated in Laurasia after the 
break-up of Pangaea ~150—175 Ma and 
before the initial break-up of Gondwana 
~130—110 Ma

Laurasian fossils 
predate Gondwanan 
fossils.  

Each major Gondwanan salticoid lineage traced back to 
more basal Laurasian groups.

8

Salticoida originated in Gondwana after the 
break-up of Pangaea ~150—175 Ma and 
before the initial break-up of Gondwana 
~130—110 Ma

Gonwanan fossils 
predate Laurasia 
fossils.

Multiple Gondwanan lineages diverge in Africa and 
Australamerica.  these lineages diverge later between 
Australia and South America.

9

Salticoida originated in Laurasia after the 
initial break-up of Gondwana ~130—110 
Ma, but before the break-up of Australasia 
~35 Ma

Laurasian fossils 
predate Gondwanan 
fossils.

Multiple salticoid lineages can be traced from Laurasian 
groups to groups in either Africa or Australasia.  More early 
salticoid lineages, and earlier fossils, in Africa than in 
Australamerica.

10

Salticoida originated in Australasia after the 
initial break-up of Gondwana  ~130—110 
Ma, but before the break-up of Australasia 
~35 Ma

Australasian fossils 
predate any other 
fossils.  

Multiple salticoid lineages can be traced from Australasian 
origins, with primary branches split between South America 
and Greater Australia.
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Unless many more fossils are discovered, any testing of these hypotheses must be based on the biogeography 
and phylogeny of recent species.  The great diversity of lineages crossing the Wallace Line (Southeast Asia into 
the East Indies to New Guinea) is particularly problematic for this purpose, as these may have originated from 
either the north (Laurasia) or from the south (Australamerica).  A number of groups that are basal to both the 
spartaeines and the salticoids (Tomocyrba, Massagris, hisponines, and perhaps Goleba; Maddison and Needham 
2006, Maddison  et al. 2008) in the recent Madagascar to East Africa fauna may support either a Pangaean 
(hypothesis 1, above) or a Gondwanan (3) origin for the Salticidae.  With respect to the origin of the Salticoida, 
hypothesis (10) gets some support from the fact that one of the two major branches of the Salticoida, the almost 
exclusively neotropical Amycoida (Maddison and Hedin 2003, Maddison  et al. 2008), almost certainly has a 
South American origin.  The apparent failure of Amycoida to cross to Australia may be related to the fact that 
these are primarily tropical salticids.  The other major branch divided many times, and includes several major 
groups that may have crossed the Antarctic land bridge (see below).  The failure to find many salticids in early 
Eocene  Europe  (Penney 2007),  and no  salticoids  in  later  Eocene  Europe  (Table  2)  is  consistent with  this 
hypothesis.  The Salticoida may have been largely confined to Australamerica in the Eocene, but we have no 
salticid fossils of any kind with which to establish their presence.  Again, we need to be very cautious in our 
interpretation of a very fragmented, incomplete fossil record.  We also must remember that even as diverse a 
group as the Salticoida at one time consisted of a single species, a species that may have been neither widely 
distributed  nor  abundant.   It  is  almost  certain  that  any important  ancestor  species  like  this  would be missing altogether from the fossil record.  Only at a much later date, after it had diversified into a number of competitive species, would there be any probability of a fossil presence.  The relatively short interval (~13—18 My) between the end of the Eocene and the emergence of modern neotropical genera, as well the enormous diversity found within the major clades of modern salticoids, suggest that that there were a number of salticoid species alive during the Eocene.  These would include the ancestral species for the major salticoid clades that we see today.

Tentative identification of some trans-Antarctic salticid cladesSome local or relatively endemic salticid groups from Greater Australia (including New Guinea) have been matched with possible South American sister groups in Table 5.Table 5.  Some endemic or near-endemic salticid genera from greater Australia (including New Guinea) matched with possible South American sister groups.
Clade Australian sister group South American sister group ReferencesSpartaeinae + lapsiines Spartaeinae:  Mintonia, Portia lapsiines:  Gallianora, Lapsias, Thrandina Maddison and Needham 2006, Richardson 2006, Żabka 1994Astioida + Marpissoida Astioida:  Adoxotoma, Arasia, Astia,  

Damoetas, Helpis, Holoplatys,  
Jacksonoides, Ligonipes, Megaloastia,  
Mopsolodes, Mopsus, Myrmarachne,  
Ocrisiona, Opisthoncus, Rhombonotus,  
Sandalodes, Simaetha, Simaethula,  
Sondra, Tara, Tauala, Zebraplatys

Marpissoida:  Beata, Bellota, Eris,  
Hentzia, Itata, Maevia, Metacyrba,  
Peckhamia, Psecas, Rhetenor, Rudra,  
Sassacus, Tutelina, Zygoballus

Wanless 1988, Hedin and Maddison 2001,  Maddison and Hedin 2003, Richardson et al. 2006, Maddison et al. 2008
Euophryinae Euophryinae (part):  Ascyltus,  

Athamas, Bathippus, Canama, Cytaea,  
Ergane, Euryattus, Hypoblemum, 
Jotus, Lauharulla, Lycidas, Maratus,  
Margaromma, Prostheclina, Servaea,  
Spilargus, Udvardya, Zenodorus

Euophryinae (part):  Amphidraus,  
Anasaitis, Asaphobelis, Belliena, Chapoda,  
Chloridusa, Cobanus, Commoris,  
Coryphasia, Corythalia, Ilargus, Maeota,  
Mopiopia, Neonella, Ocnotelus, Pensacola,  
Semnolius, Sidusa, Siloca, Stoidis, Tariona,  
Tylogonus

Maddison and Hedin 2003, Richardson et al. 2006, Maddison et al. 2008, Hill 2009
Grayenulla + 
Hisukattus

Grayenulla Żabka 1992:  seven species from Australia Hisukattus Galiano 1987:  four species from Argentina, Brazil, and Paraguay Galiano 1987, Żabka 1992, Żabka 2002, Żabka and Gray 2002, Richardson et al. 2006



Peckhamia 76.1  Salticidae of the Antarctic land bridge 9To identify clades that  may have crossed the Antarctic land bridge, I began with an examination of the Australian genera that do not appear to have migrated to that continent at a later time from southeast Asia.  Many of these genera are also endemic to New Zealand and can be grouped into two larger clades, the Astioida (Maddison et al. 2008) and the Euophryinae (Prószyński 1976).  Note that the clades divided into Australian and South American groups here range in nominal size from a small group of genera to major divisions of the Salticidae as a whole.  Given the long interval over which the Australian land bridge was in place, and our present uncertainty with respect to a timeline for the evolution of salticid groups, this can be expected.  Although modern genera are given as examples of the respective clades, it can be expected  that  unknown,  now  extinct  members  of  these  clades  actually  participated  in  any  actual migration across Antarctica.The modern distribution of spartaeines, with only a few known species from Australia and a center of diversity in the East Indies, provides little support for the division of spartaeines and lapsiines across Australamerica.  One  pre-spartaeine species  may have migrated out of Greater Australia, however, and subsequently diversified in the tropical West Indies and Southeast Asia.   This division is included for consideration because of recent evidence from gene sequencing (molecular phylogeny) that spartaeines and lapsiines are sister groups (Maddison and Needham 2006).The  second  division,  between  the  large  groups  Astioida (Maddison  et  al. 2008)  and  Marpissoida (Maddison and Hedin 2003), reflects the relatively close relationship between these groups that has been suggested through comparative gene sequencing (Maddison  et al. 2008).  Both groups are now greatly diversified, the former in the greater Australian area (including New Zealand) and the latter in both North and South America.  Both groups include a variety of convergent forms that range from the largest of salticids (e.g., Mopsus and Phidippus), to flattened, cryptic forms (e.g., Holoplatys and Platycryptus), to ant mimics (e.g.,  Myrmarachne and  Peckhamia).  Given the size, diversity, and regional importance of these groups, the hypothesis that they diversified to current forms after the closing of the Antarctic land bridge (after the Eocene) appears to be most consistent with the fact that no astioids are found in South America, and  marpissoids  (while  having  a  subsequent,  smaller  dispersal  to  the  Palaearctic)  are  essentially American.The third division (suggested by Hill 2009) of the Euophryinae is based on the fact that this group has two current  centers  of  diversity,  one  in  the  Americas,  and  one  that  appears  to  radiate  out  of  Australia, including many endemic species in that area.  Comparative gene sequencing (Maddison and Hedin 2003, Maddison  et al. 2008) has indicated a close relationship between euophryines in both areas,  but the detailed phylogeny of  existing genera will  require more study to determine if  a  single,  or  if  multiple divisions of the Euophryinae, can be associated with the closing of the Antarctic land bridge.  Timing of diversification in this group is also of great interest.  As noted above,  Australamerica was around for a long time.In addition to species with an affinity to either Asia or Australia, some very unusual endemic salticids can be found in the vicinity of New Guinea.  These include the basal cocalodines (Maddison 2009), as well as highly unusual forms like Coccorchestes, Diolenius, and Furculatus (Balogh 1981, Żabka, 1994, Szűts 2003, Gardzińska and Żabka 2006).  Many of the endemics, and almost all of the genera shared with Australia, can be placed in either the Astioda (e.g., Opisthoncus and Sandalodes) or the Euophryinae (e.g., Bathippus and  Euryattus).  More than 200 widely distributed species, most from the tropics of Africa or the East Indies, have been placed in the antlike genus Myrmarachne.  Recently (Maddison et al. 2008) included this large genus with the related Ligonipes in the Astioida.  Almost all of the other Astioda are Australasian in distribution, and this exception by a widely distributed genus that has also made its way to many tropical islands (including Madagascar) should not affect our hypothesis with respect to an older Australamerican origin for the Astioida as a group.



Peckhamia 76.1  Salticidae of the Antarctic land bridge 10Finally, based on the suggestion (Żabka and Gray 2002) that distinctive Australian endemics of the genus 
Grayenulla Żabka 1992 resembled the South American Hisukattus Galiano 1987, I have added this division to Table 5 for consideration.  In both genera the bulb of the male pedipalp is distinctively angulate or bears unusual protuberances,  and and a heavy,  curved ebolus emerges laterally (Galiano 1987, Żabka 1992).Between the astioids, the endemic euophryines, and Grayenulla, this brief review has thus treated most of the  endemic  salticids  in  Australia,  and  supports  the  view (Richardson  et  al. 2006)  that  a  significant number of endemic species  not closely related to the Asian fauna remain to be discovered with further exploration of the Salticidae of that continent.It is important to note that, although continental boundaries often appear to determine the distribution of major groups of salticids (Żabka 1995, Maddison et al. 2008), these spiders are also capable of dispersal over the ocean (e.g.,  Żabka and Nentwig 2002, Arnedo and Gillespie 2006).  Successful transport of a single female spider, or a small number of spiders, might result in their colonization and diversification in a new area, particularly if they were not faced with serious competition.  Statistically, the sheer number of dispersal opportunities across a direct physical connection would appear to drive the larger picture, but not the complete picture.  The introduction of even one species with novel or innovative features, however improbable, could lead to the radiation of many descendent species over time. 
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